Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Complexity as a novel probe of quantum quenches: universal scalings and purifications

MPG-Autoren
/persons/resource/persons224762

Camargo,  Hugo Antonio
Gravity, Quantum Fields and Information, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons218062

Das,  Diptarka
Gravity, Quantum Fields and Information, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons209103

Heller,  Michal P.
Gravity, Quantum Fields and Information, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons224771

Jefferson.,  Ro
Gravity, Quantum Fields and Information, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1807.07075.pdf
(Preprint), 620KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Camargo, H. A., Caputa, P., Das, D., Heller, M. P., & Jefferson., R. (in preparation). Complexity as a novel probe of quantum quenches: universal scalings and purifications.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-E3D9-A
Zusammenfassung
We apply the recently developed notion of complexity for field theory to a quantum quench through the critical point in 1+1 dimensions. We begin with a toy model consisting of a quantum harmonic oscillator, and show that complexity exhibits universal scalings in both the slow and fast quench regimes. We then generalize our results to a 1-dimensional harmonic chain, and show that preservation of these scaling behaviours in free field theory depends on the choice of norm. Applying our set-up to the case of two oscillators, we quantify the complexity of purification associated to a subregion, and demonstrate that complexity is capable of probing features to which the entanglement entropy is insensitive. We find that the complexity of subregions is superadditive, and comment on potential implications for holography.