Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Matrix Model for Riemann Zeta via its Local Factors

MPG-Autoren
/persons/resource/persons224778

Ghoshal,  Debashis
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1807.07342.pdf
(Preprint), 451KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chattopadhyay, A., Dutta, P., Dutta, S., & Ghoshal, D. (in preparation). Matrix Model for Riemann Zeta via its Local Factors.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-E3DF-4
Zusammenfassung
We propose the construction of an ensemble of unitary random matrices (UMM) for the Riemann zeta function. Our approach to this problem is `piecemeal', in the sense that we consider each factor in the Euler product representation of the zeta function to first construct a UMM for each prime $p$. We are able to use its phase space description to write the partition function as the trace of an operator that acts on a subspace of square-integrable functions on the p-adic line. This suggests a Berry-Keating type Hamiltonian. We combine the data from all primes to propose a Hamiltonian and a matrix model for the Riemann zeta function.