English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of Carbon Variation on Microstructure Evolution in Weld Heat-Affected Zone of Nb–Ti Microalloyed Steels

MPS-Authors
/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ma, X., Li, X., Langelier, B., Gault, B., Subramanian, S., & Collins, L. (2018). Effects of Carbon Variation on Microstructure Evolution in Weld Heat-Affected Zone of Nb–Ti Microalloyed Steels. Metallurgical and Materials Transactions A, 49(10), 4824-4837. doi:10.1007/s11661-018-4751-8.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E5C4-F
Abstract
We investigated the effects of C concentration variation from 0.028 to 0.058 wt pct on microstructure of the coarse grained heat-affected zone (CGHAZ) of low heat input girth welded Ti-Nb microalloyed steels by using electron microscope and atom probe tomography. It is found that the CGHAZ microstructure exhibits a systematic response to C variation. Increased C raises the temperature for precipitation of NbC. This leads to coarser (Ti, Nb)N-Nb(C, N) but finer delayed strain-induced NbC in the high-C steel than in the low-C steel. Fine strain-induced NbC are ineffective in preventing austenite grain coarsening in CGHAZ due to their fast dissolution upon heating. For a given inter-particle spacing originally determined by (Ti, Nb)N particles, increased epitaxial growth of Nb(C, N) on pre-existing (Ti, Nb)N in the high-C steel results in a smaller austenite grain size of 34 µm in the CGHAZ of the high-C steel than that of 52 µm in the low-C steel. Increased C promotes a microstructure consisting of bainitic lath structure with C Cottrell atmospheres at dislocation debris and martensitic layers of 30 to 100 nm in thickness at inter-lath boundaries in the CGHAZ. Increased C promotes configuration of crystallographic variants belonging to different Bain groups in the neighbors, preferentially twin-related variant pairs within a bainite packet. © 2018 The Minerals, Metals Materials Society and ASM International