English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Development of high modulus steels based on the Fe – Cr – B system

MPS-Authors
/persons/resource/persons136263

Baron,  Christian
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125400

Springer,  Hauke
Combinatorial Metallurgy and Processing, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Baron, C., Springer, H., & Raabe, D. (2018). Development of high modulus steels based on the Fe – Cr – B system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 724, 142-147. doi:10.1016/j.msea.2018.03.082.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E706-4
Abstract
We present a novel alloy design strategy for cost-efficient high modulus steels with an increased stiffness / mass density ratio. The concept is based on the liquid metallurgy synthesis of Fe – Cr – B based alloys, straightforward processability, and well tuneable mechanical properties via plain heat treatments. The base alloy Fe – 18 Cr – 1.6 B (wt) contained 14–17 vol of (Cr,Fe)2B particles of ellipsoidal morphology in a ferritic matrix. Hot rolled materials revealed a specific modulus of 32.8 GPa g−1 cm3, exceeding that of conventional Fe-Cr steels by almost 30. Mechanical properties obtained are comparable to TiB2 based high modulus steels. Addition of 1 wt Cu to the base alloy did not interact with the formation, fraction, size and morphology of (Cr,Fe)2B particles, and allowed to mildly increase the strength values by ageing treatments, however at the price of a reduction of the specific modulus. C additions of 0.2 wt did not affect the (Cr,Fe)2B particle microstructure greatly, but free C dissolved in the matrix enables for the first time to utilize the wide range of microstructures and mechanical properties of established C-containing high strength steels also in high modulus steels. © 2018 Elsevier B.V.