English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

MPS-Authors
/persons/resource/persons76195

Thomas,  Jörg
Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Siebels, M., Mai, L., Schmolke, L., Schütte, K., Barthel, J., Yue, J., et al. (2018). Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. Beilstein Journal of Nanotechnology, 9(1), 1881-1894. doi:10.3762/bjnano.9.180.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E84C-5
Abstract
Decomposition of rare-earth tris(N, N'-diisopropyl-2-methylamidinato)metal(III) complexes [RE(MeC(N(iPr)2))3] (RE(amd)3; RE = Pr(III), Gd(III), Er(III)) and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium(III) (Eu(dpm)3) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf2]) and in propylene carbonate (PC) yield oxide-free rare-earth metal nanoparticles (RE-NPs) in [BMIm][NTf2] and PC for RE = Pr, Gd and Er or rare-earth metal-fluoride nanoparticles (REF3-NPs) in the fluoridedonating IL [BMIm][BF4] for RE = Pr, Eu, Gd and Er. The crystalline phases and the absence of significant oxide impurities in RE-NPs and REF3-NPs were verified by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED) and highresolution X-ray photoelectron spectroscopy (XPS). The size distributions of the nanoparticles were determined by transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to an average diameter of (11 ± 6) to (38 ± 17) nm for the REF3-NPs from [BMIm][BF4]. The RE-NPs from [BMIm][NTf2] or PC showed diameters of (1.5 ± 0.5) to (5 ± 1) nm. The characterization was completed by energy-dispersive X-ray spectroscopy (EDX). © 2018 Siebels et al.