Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Dislocation-based finite element modelling of hydrogen embrittlement in steel alloys

MPG-Autoren
/persons/resource/persons225182

Hatem,  Tarek M.
Centre for Simulation Innovation and Advanced Manufacturing, The British University in Egypt, El-Sherouk City, Cairo, Egypt;
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abdelmawla, A., Hatem, T. M., & Ghoniem, N. M. (2018). Dislocation-based finite element modelling of hydrogen embrittlement in steel alloys. In Minerals, Metals and Materials Series (pp. 213-223). Springer International Publishing.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-E846-B
Zusammenfassung
Mechanical properties of many metals are greatly influenced by hydrogen solutes causing a well-known phenomenon of Hydrogen Embrittlement (HE). Hydrogen atoms affect the dislocation core, materials cohesion, and/or vacancies clustering causing the material capacity for plastic deformation to decrease. Such degradation in performance of metals leads to embrittlement resulting of catastrophic failure in structures. In this research, a physically-based constitutive model is developed to study hydrogen embrittlement in steel alloys. The developed model is an extension for Ghoniem-Matthews-Amodeo (GMA) dislocation-based model in order to predict the constitutive relation in the plastic regime for high strength steel alloys while considering hydrogen Effect on plasticity. The proposed physically-based dislocation-density model include the effect of hydrogen solute on dislocation mobility and interaction. The proposed model study the mechanical behavior of high-strength steel of HT-9 tensile test specimen. © The Minerals, Metals Materials Society 2018.