User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Conference Paper

Dislocation-based finite element modelling of hydrogen embrittlement in steel alloys


Hatem,  Tarek M.
Centre for Simulation Innovation and Advanced Manufacturing, The British University in Egypt, El-Sherouk City, Cairo, Egypt;
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Abdelmawla, A., Hatem, T. M., & Ghoniem, N. M. (2018). Dislocation-based finite element modelling of hydrogen embrittlement in steel alloys. In Minerals, Metals and Materials Series (pp. 213-223). Springer International Publishing.

Cite as: http://hdl.handle.net/21.11116/0000-0001-E846-B
Mechanical properties of many metals are greatly influenced by hydrogen solutes causing a well-known phenomenon of Hydrogen Embrittlement (HE). Hydrogen atoms affect the dislocation core, materials cohesion, and/or vacancies clustering causing the material capacity for plastic deformation to decrease. Such degradation in performance of metals leads to embrittlement resulting of catastrophic failure in structures. In this research, a physically-based constitutive model is developed to study hydrogen embrittlement in steel alloys. The developed model is an extension for Ghoniem-Matthews-Amodeo (GMA) dislocation-based model in order to predict the constitutive relation in the plastic regime for high strength steel alloys while considering hydrogen Effect on plasticity. The proposed physically-based dislocation-density model include the effect of hydrogen solute on dislocation mobility and interaction. The proposed model study the mechanical behavior of high-strength steel of HT-9 tensile test specimen. © The Minerals, Metals Materials Society 2018.