Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Consistent Prediction of Mutation Effect on Drug Binding in HIV-1 Protease Using Alchemical Calculations

MPG-Autoren
/persons/resource/persons79204

Bastys,  Tomas
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44342

Doncheva,  Nadezhda Tsankova
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

/persons/resource/persons117910

Kalinina,  Olga V.
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bastys, T., Gapsys, V., Doncheva, N. T., Kaiser, R., de Groot, B. L., & Kalinina, O. V. (2018). Consistent Prediction of Mutation Effect on Drug Binding in HIV-1 Protease Using Alchemical Calculations. Journal of Chemical Theory and Computation, 14(7), 3397-3408. doi:10.1021/acs.jctc.7b01109.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-E5BA-B
Zusammenfassung
Despite of a large number of antiretroviral drugs targeting HIV-1 protease for inhibition, mutations in this protein during the course of patient treatment can render them inefficient. This emerging resistance inspired numerous computational studies of the HIV-1 protease aimed at predicting the effect of mutations on drug binding in terms of free binding energy $\Delta G$, as well as in mechanistic terms. In this study, we analyse ten different protease-inhibitor complexes carrying major resistance-associated mutations (RAMs) G48V, I50V, and L90M using molecular dynamics simulations. We demonstrate that alchemical free energy calculations can consistently predict the effect of mutations on drug binding. By explicitly probing different protonation states of the catalytic aspartic dyad, we reveal the importance of the correct choice of protonation state for the accuracy of the result. We also provide insight into how different mutations affect drug binding in their specific ways, with the unifying theme of how all of them affect the crucial for drug binding regions of the protease.