Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft


Dubinin,  E. M.
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Vaisberg, O. L., Ermakov, V. N., Shuvalov, S. D., Zelenyi, L. M., Halekas, J., DiBraccio, G. A., et al. (2018). The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 123(4), 2679-2695. doi:10.1002/2018JA025202.

Cite as: http://hdl.handle.net/21.11116/0000-0001-E726-0
We analyzed 44 passes of the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft through the magnetosphere, arranged by the angle between electric field vector and the projection of spacecraft position radius vector in the plane perpendicular to the Mars‐Sun line (θE). All passes were divided into three angular sectors near 0°, 90°, and 180° θE angles in order to estimate the role of the interplanetary magnetic field direction in plasma and magnetic properties of dayside Martian magnetosphere. The time interval chosen was from 17 January to 4 February 2016 when MAVEN was crossing the dayside magnetosphere at solar zenith angle ~70°. Magnetosphere as the region with prevailing energetic planetary ions is always found between the magnetosheath and the ionosphere. The analysis of dayside interaction region showed that for each angular sector with different orientation of the solar wind electric field vector E = −1/c V × B one can find specific profiles of the magnetosheath, the magnetic barrier (Michel, 1971, https://doi.org/10.1029/RG009i002p00427; Zhang et al., 1991, https://doi.org/10.1029/91JA00088), and the magnetosphere. Magnetic barrier forms in front of the magnetosphere, and relative magnetic field magnitudes in these two domains vary. The average height of the boundary with ionosphere is ~530 km, and the average height of the magnetopause is ~730 km. We discuss the implications of the observed magnetosphere structure to the planetary ions loss mechanism.