English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modulation of spike timing by sensory deprivation during induction of cortical map plasticity

MPS-Authors
/persons/resource/persons92449

Celikel,  Tansu
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Celikel, T., Szostak, V. A., & Feldman, D. E. (2004). Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nature Neuroscience, 7(5), 534-541. doi:10.1038/nn1222.


Cite as: http://hdl.handle.net/21.11116/0000-0001-EE0F-4
Abstract
Deprivation-induced plasticity of sensory cortical maps involves long-term potentiation (LTP) and depression (LTD) of cortical synapses, but how sensory deprivation triggers LTP and LTD in vivo is unknown. Here we tested whether spike timing-dependent forms of LTP and LTD are involved in this process. We measured spike trains from neurons in layer 4 (L4) and layers 2 and 3 (L2/3) of rat somatosensory cortex before and after acute whisker deprivation, a manipulation that induces whisker map plasticity involving LTD at L4-to-L2/3 (L4-L2/3) synapses. Whisker deprivation caused an immediate reversal of firing order for most L4 and L2/3 neurons and a substantial decorrelation of spike trains, changes known to drive timing-dependent LTD at L4-L2/3 synapses in vitro. In contrast, spike rate changed only modestly. Thus, whisker deprivation is likely to drive map plasticity by spike timing-dependent mechanisms.