English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Plasma acceleration on multiscale temporal variations of electric and magnetic fields during substorm dipolarization in the Earth’s magnetotail

MPS-Authors
/persons/resource/persons104035

Kronberg,  Elena A.
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103877

Daly,  Patrick W.
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Parkhomenko, E. I., Malova, H. V., Grigorenko, E. E., Popov, V. Y., Petrukovich, A. A., Delcourt, D. C., et al. (2018). Plasma acceleration on multiscale temporal variations of electric and magnetic fields during substorm dipolarization in the Earth’s magnetotail. Annals of Geophysics, 61(3): GM334. doi:10.4401/ag-7582.


Cite as: https://hdl.handle.net/21.11116/0000-0001-F4C2-0
Abstract
Magnetic field dipolarizations are often observed in the magnetotail during substorms. These generally include three temporal scales: (1) actual dipolarization when the normal magnetic field changes during several minutes from minimum to maximum level ; (2) sharp 15Bz"> bursts (pulses) interpreted as the passage of multiple dipolarization fronts with characteristic time scales < 1 min, and (3) bursts of electric and magnetic fluctuations with frequencies up to electron gyrofrequency occurring at the smallest time scales (≤ 1 s). We present a numerical model where the contributions of the above processes (1)-(3) in particle acceleration are analyzed. It is shown that these processes have a resonant character at different temporal scales. While O+ ions are more likely accelerated due to the mechanism (1), H+ ions (and to some extent electrons) are effectively accelerated due to the second mechanism. High-frequency electric and magnetic fluctuations accompanying magnetic dipolarization as in (3) are also found to efficiently accelerate electrons.