English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Integrated Functions of Membrane Property Sensors and a Hidden Side of the Unfolded Protein Response

MPS-Authors
/persons/resource/persons204781

Covino,  Roberto
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Covino, R., Hummer, G., & Ernst, R. (2018). Integrated Functions of Membrane Property Sensors and a Hidden Side of the Unfolded Protein Response. Molecular Cell, 71(3), 458-467. doi:10.1016/j.molcel.2018.07.019.


Cite as: https://hdl.handle.net/21.11116/0000-0002-64E6-A
Abstract
Eukaryotic cells face the challenge of maintaining the complex composition of several coexisting organelles. The molecular mechanisms underlying the homeostasis of subcellular membranes and their adaptation during stress are only now starting to emerge. Here, we discuss three membrane property sensors of the endoplasmic reticulum (ER), namely OPI1, MGA2, and IRE1, each controlling a large cellular program impacting the lipid metabolic network. OPI1 coordinates the production of membrane and storage lipids, MGA2 regulates the production of unsaturated fatty acids required for membrane biogenesis, and IRE1 controls the unfolded protein response (UPR) to adjust ER size, protein folding, and the secretory capacity of the cell. Although these proteins use remarkably distinct sensing mechanisms, they are functionally connected via the ER membrane and cooperate to maintain membrane homeostasis. As a rationalization of the recently described mechanism of UPR activation by lipid bilayer stress, we propose that IRE1 can sense the protein-to-lipid ratio in the ER membrane to ensure a balanced production of membrane proteins and lipids.