English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere

MPS-Authors
/persons/resource/persons81144

Steele,  Christopher
Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Steele, C., & Chakravarty, M. M. (2018). Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere. NeuroImage, 170, 164-173. doi:10.1016/j.neuroimage.2017.04.066.


Cite as: https://hdl.handle.net/21.11116/0000-0001-F72B-9
Abstract
Though commonly thought of as a "motor structure", we now know that the cerebellum's reciprocal connections to the cerebral cortex underlie contributions to both motor and non-motor behavior. Further, recent research has shown that cerebellar dysfunction may contribute to a wide range of neuropsychiatric disorders. However, there has been little characterization of normative variability at the level of cerebellar structure that can facilitate and further our understanding of disease biomarkers. In this manuscript we examine normative variation of the cerebellum using data from the Human Connectome Project (HCP). The Multiple Automatically Generated Templates (MAGeT) segmentation tool was used to identify the cerebella and 33 anatomically-defined lobules from 327 individuals from the HCP. To characterize normative variation, we estimated population mean volume and variability, assessed differences in hemisphere and sex, and related lobular volume to motor and non-motor behavior. We found that the effects of hemisphere and sex were not homogeneous across all lobules of the cerebellum. Greater volume in the right hemisphere was primarily driven by lobules Crus I, II, and H VIIB, with H VIIIA exhibiting the greatest left>right asymmetry. Relative to total cerebellar gray-matter volume, females had larger Crus II (known to be connected with non-motor regions of the cerebral cortex) while males had larger motor-connected lobules including H V, and VIIIA/B. When relating lobular volume to memory, motor performance, and emotional behavior, we found some evidence for relationships that have previously been identified in the literature. Our observations of normative cerebellar structure and variability in young adults provide evidence for lobule-specific differences in volume and the relationship with sex and behavior - indicating that the cerebellum cannot be considered a single structure with uniform function, but as a set of regions with functions that are likely as diverse as their connectivity with the cerebral cortex.