English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain

MPS-Authors
/persons/resource/persons273025

Williams,  EA
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons84766

Verasztó,  C
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273016

Jasek,  S
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273027

Conzelmann,  M
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273022

Shahidi,  R
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272958

Bauknecht,  P
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85269

Jékely,  G
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Williams, E., Verasztó, C., Jasek, S., Conzelmann, M., Shahidi, R., Bauknecht, P., et al. (2017). Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain. eLife, 6: e26349. doi:10.7554/eLife.26349.


Cite as: https://hdl.handle.net/21.11116/0000-0002-1A8E-2
Abstract
Neurosecretory centers in animal brains use peptidergic signaling to influence physiology and behavior. Understanding neurosecretory center function requires mapping cell types, synapses, and peptidergic networks. Here we use transmission electron microscopy and gene expression mapping to analyze the synaptic and peptidergic connectome of an entire neurosecretory center. We reconstructed 78 neurosecretory neurons and mapped their synaptic connectivity in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory center expressing many neuropeptides, including hypothalamic peptide orthologs and their receptors. Analysis of peptide-receptor pairs in spatially mapped single-cell transcriptome data revealed sparsely connected networks linking specific neuronal subsets. We experimentally analyzed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signaling. Our study uncovered extensive networks of peptidergic signaling within a neurosecretory center and its connection to the synaptic brain.