English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neandertal and Denisovan DNA from Pleistocene sediments

MPS-Authors
/persons/resource/persons272620

Weiß,  CL
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Research Group for Ancient Genomics and Evolution, Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons72607

Burbano,  HA
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Research Group for Ancient Genomics and Evolution, Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Slon, V., Hopfe, C., Weiß, C., Mafessoni, F., de la Rasilla, M., Lalueza-Fox, C., et al. (2017). Neandertal and Denisovan DNA from Pleistocene sediments. Science, 356(6338), 605-608. doi:10.1126/science.aam9695.


Cite as: https://hdl.handle.net/21.11116/0000-0002-04F6-4
Abstract
Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found.