English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

What causes mating system shifts in plants? Arabidopsis lyrata as a case study

MPS-Authors
/persons/resource/persons85263

Hagmann,  J
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271524

Kim,  S-T
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85266

Weigel,  D
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mable, B., Hagmann, J., Kim, S.-T., Adam, A., Kilbride, E., Weigel, D., et al. (2017). What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity, 118(1), 52-63. doi:10.1038/hdy.2016.99.


Cite as: https://hdl.handle.net/21.11116/0000-0002-04D4-A
Abstract
The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC x SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.