English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Chara Genome: secondary complexity and implications for plant terrestrialization

MPS-Authors
/persons/resource/persons201528

Ullrich,  Kristian K.
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Locator

Link
(Publisher version)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Nishiyama, T., Sakayama, H., de Vries, J., Buschmann, H., Saint-Marcoux, D., Ullrich, K. K., et al. (2018). The Chara Genome: secondary complexity and implications for plant terrestrialization. Cell, 174(2), 448-468. doi:10.1016/j.cell.2018.06.033.


Cite as: http://hdl.handle.net/21.11116/0000-0002-093D-1
Abstract
The draft genome of Chara braunii reveals many plant-like features important for colonization of land that evolved in charophytic algae and therefore prior to the earliest land plants. Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote. © 2018 Elsevier Inc.