Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Patterning, Dynamics and Evolution in the Ocellar Complex of the Fruit Fly

MPG-Autoren
/persons/resource/persons189197

Aguilar-Hidalgo,  Daniel
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Aguilar-Hidalgo, D., Casares, F., & Carmen Lemos, M. (2018). Patterning, Dynamics and Evolution in the Ocellar Complex of the Fruit Fly. In J. F. R. Archilla, F. Palmero, M. C. Lemos, B. Sánchez-Rey, & J. Casado-Pascual (Eds.), Nonlinear Systems, Vol. 2: Nonlinear Phenomena in Biology, Optics and Condensed Matter (pp. 39-62). doi:10.1007/978-3-319-72218-4_2.


Zitierlink: http://hdl.handle.net/21.11116/0000-0002-7ACE-E
Zusammenfassung
One of the most intriguing aspects in developing tissues is the emergence of chemical patternswith the capability to drive cellular differentiation, provide positional information and stimuli or inhibit growth. Among these features, the study of cell specificity driven by chemical patterns requires the coupling of positional information mechanisms with the dynamics of complex genetic networks. In this work, we follow such approach to study the formation of the ocellar complex in the fruit fly Drosophila melanogaster. We present a theoretical model that fits experimental observations in both patterning and molecular regulation, and derive a simplified model, which not only recapitulates patterning features but also predicts that differences in the size of the ocellar complex among fly species might depend on differential biochemical regulation of an evolutionarily fixed regulatory network. Moreover, we discuss how this regulatory network can generate sustained spatio-temporal oscillations of some of the network's components. We also find that these oscillations can become highly complex in the presence of another oscillator, with parameter-dependent regions of multi-periodic and quasiperiodic regimes.