Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Combining deep learning and active contours opens the way to robust, automated analysis of brain cytoarchitectonics

MPG-Autoren

Thierbach,  Konstantin
MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Gavriilidis,  Filippos
MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons180061

Kirilina,  Evgeniya
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Jaeger ,  Carsten
MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19656

Geyer,  Stefan
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons201756

Scherf,  Nico
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Thierbach_2018.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thierbach, K., Bazin, P.-L., De Back, W., Gavriilidis, F., Kirilina, E., Jaeger, C., et al. (2018). Combining deep learning and active contours opens the way to robust, automated analysis of brain cytoarchitectonics. BioRxiv. doi:10.1101/297689.


Zitierlink: http://hdl.handle.net/21.11116/0000-0002-130B-D
Zusammenfassung
Deep learning has thoroughly changed the field of image analysis yielding impressive results whenever enough annotated data can be gathered. While partial annotation can be very fast, manual segmenta- tion of 3D biological structures is tedious and error-prone. Additionally, high-level shape concepts such as topology or boundary smoothness are hard if not impossible to encode in Feedforward Neural Networks. Here we present a modular strategy for the accurate segmentation of neural cell bodies from light-sheet microscopy combining mixed-scale convolutional neural networks and topology-preserving geometric deformable models. We show that the network can be trained efficiently from simple cell centroid annotations, and that the final segmentation provides accurate cell detection and smooth segmentations that do not introduce further cell splitting or merging.