English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Free-atom-like d states in single-atom alloy catalysts

MPS-Authors
/persons/resource/persons209201

Greiner,  Mark T.
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons135780

Jones,  Travis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons71843

Beeg,  Sebastian
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons134112

Zwiener,  Leon
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons80761

Scherzer,  Michael
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21557

Girgsdies,  Frank
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)

Supporting Information-revised.pdf
(Supplementary material), 2MB

Revised Figures.pdf
(Supplementary material), 529KB

Citation

Greiner, M. T., Jones, T., Beeg, S., Zwiener, L., Scherzer, M., Girgsdies, F., et al. (2018). Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 10(10), 1008-1015. doi:10.1038/s41557-018-0125-5.


Cite as: http://hdl.handle.net/21.11116/0000-0002-16F0-6
Abstract
Alloying provides a means by which to tune a metal catalyst’s electronic structure and thus tailor its performance; however, mean-field behaviour in metals imposes limits. To access unprecedented catalytic behaviour, materials must exhibit emergent properties that are not simply interpolations of the constituent components’ properties. Here we show an emergent electronic structure in single-atom alloys, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element. This unusual electronic structure alters the minority element’s adsorption properties such that the bonding with adsorbates resembles the bonding in molecular metal complexes. We demonstrate this phenomenon with AgCu alloys, dilute in Cu, where the Cu d states are nearly unperturbed from their free-atom state. In situ electron spectroscopy demonstrates that this unusual electronic structure persists in reaction conditions and exhibits a 0.1 eV smaller activation barrier than bulk Cu in methanol reforming. Theory predicts that several other dilute alloys exhibit this phenomenon, which offers a design approach that may lead to alloys with unprecedented catalytic properties.