English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

CEST imaging at 9.4 T using adjusted adiabatic spin‐lock pulses for on‐ and off‐resonant T1⍴‐dominated Z‐spectrum acquisition

MPS-Authors
/persons/resource/persons216025

Herz,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216010

Gandhi,  C
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216082

Schuppert,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215996

Deshmane,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Herz, K., Gandhi, C., Schuppert, M., Deshmane, A., Scheffler, K., & Zaiss, M. (2019). CEST imaging at 9.4 T using adjusted adiabatic spin‐lock pulses for on‐ and off‐resonant T1⍴‐dominated Z‐spectrum acquisition. Magnetic Resonance in Medicine, 81(1), 275-290. doi:10.1002/mrm.27380.


Cite as: http://hdl.handle.net/21.11116/0000-0002-1132-2
Abstract
Purpose The CEST experiment, with its correlation to rare proton species that are in exchange with the water pool, is very similar to the off‐resonant water spin‐lock (SL) experiment. In particular, low‐power SL Z‐spectrum acquisition allows insight into T1ρ and exchange effects with decreased direct water saturation. Because the available SL methods either require high B1 power or are instable in the presence of strong B1 and B0 inhomogeneity present at ultra‐high fields, the goal of this study was to find a robust adiabatic SL pulse for on‐ and off‐resonant application in the human brain at 9.4 T. Methods A series of Bloch simulations were used to find optimal pulse shape parameters of an adjusted hyperbolic secant pulse applicable in the low power regime typically used for exchange‐weighted SL experiments. The optimized pulse was implemented and tested in phantom and in vivo experiments on a 9.4 T human scanner for on‐ and off‐resonant T1ρ‐ and Z‐spectrum measurements. Results The simulation yielded a feasible pulse shape, which yielded robust images, less sensitivity to B1 and B0 inhomogeneity compared with previous SL approaches and less direct water saturation, as well as a higher chemical exchange weighting compared with conventional CEST approaches. Conclusion By adapting a pulse shape for low‐power SL experiments, we were able to acquire robust on‐ and off‐resonant adiabatic SL prepared images in vivo at 9.4 T. This development leads directly to SL Z‐spectrum acquisition, beneficial for chemical‐exchange‐weighted MRI.