English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni

MPS-Authors
/persons/resource/persons125158

Grabowski,  Blazej
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125152

Glensk,  Albert
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125232

Körmann,  Fritz
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons215430

Reed,  Roger C.
Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, UK;
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gong, Y., Grabowski, B., Glensk, A., Körmann, F., Neugebauer, J., & Reed, R. C. (2018). Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni. Physical Review B, 97(21): 214106. doi:10.1103/PhysRevB.97.214106.


Cite as: http://hdl.handle.net/21.11116/0000-0002-1AF9-9
Abstract
Quantum-mechanical calculations are used to determine the temperature dependence of the Gibbs energy of vacancy formation in nickel. Existing data reveal a discrepancy between the high-temperature estimates from experiments and low-temperature approximations from density functional theory. Our finite-temperature calculations - which include the effects of magnetism and fully interacting phonon vibrations - demonstrate that this discrepancy is mostly caused by the previously neglected explicit anharmonic contribution. © 2018 authors. Published by the American Physical Society.