English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of Aluminum on Hydrogen Solubility and Diffusion in Deformed Fe–Mn Alloys

MPS-Authors
/persons/resource/persons125189

Hüter,  Claas
Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich, Germany;
Mescoscale Simulations, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136450

Zhang,  Xie
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125152

Glensk,  Albert
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125398

Spatschek,  Robert Philipp
Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich, Germany;
Mescoscale Simulations, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hüter, C., Dang, S. O., Zhang, X., Glensk, A., & Spatschek, R. P. (2016). Effects of Aluminum on Hydrogen Solubility and Diffusion in Deformed Fe–Mn Alloys. Advances in Materials Science and Engineering, 2016: 4287186. doi:10.1155/2016/4287186.


Cite as: http://hdl.handle.net/21.11116/0000-0002-175D-D
Abstract
We discuss hydrogen diffusion and solubility in aluminum alloyed Fe-Mn alloys. The systems of interest are subjected to tetragonal and isotropic deformations. Based on ab initio modelling, we calculate solution energies and then employ Oriani's theory which reflects the influence of Al alloying via trap site diffusion. This local equilibrium model is complemented by qualitative considerations of Einstein diffusion. Therefore, we apply the climbing image nudged elastic band method to compute the minimum energy paths and energy barriers for hydrogen diffusion. Both for diffusivity and solubility of hydrogen, we find that the influence of the substitutional Al atom has both local chemical and nonlocal volumetric contributions. © 2016 C. Hüter et al.