Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock

MPG-Autoren

Ying,  Beili
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ying, B., Feng, L., Lu, L., Zhang, J., Magdalenic, J., Su, Y., et al. (2018). Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock. The Astrophysical Journal, 856(1): 24. doi:10.3847/1538-4357/aaadaf.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-1873-2
Zusammenfassung
Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have rarely been investigated. We present analyses of a small-scale, short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics, including a very short duration of the main acceleration phase (<2 minutes), a rather high maximal acceleration rate (~50 km s−2), and peak velocity (~1800 km s−1). The fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of ~320 MHz of the fundamental band. The type II source is formed at a low height of below 1.1 R less than ~2 minutes after the onset of the main acceleration phase. Through the band-split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1–2.3 R. We find that the CME (~4 × 1030 erg) and flare (~1.6 × 1030 erg) consume similar amounts of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share a similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.