English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Light-evoked responses of bipolar cells in a mammalian retina.

MPS-Authors
/persons/resource/persons92839

Euler,  Thomas
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Euler, T., & Masland, R. H. (2000). Light-evoked responses of bipolar cells in a mammalian retina. Journal of Neurophysiology, 83(4), 1817-1829. doi:10.1152/jn.2000.83.4.1817.


Cite as: https://hdl.handle.net/21.11116/0000-0002-4760-2
Abstract
We recorded light-evoked responses from rod and cone bipolar cells using patch-clamp techniques in a slice preparation of the rat retina. Rod bipolar cells responded to light with a sustained depolarization (ON response) followed at light offset by a slight hyperpolarization. ON and OFF cone bipolar cells were encountered, both with diverse temporal properties. The responses of rod bipolar cells were composed primarily of two components, a nonspecific cation current and a chloride current. The chloride current was reduced greatly in axotomized cells and could be suppressed by coapplication of the GABA(A) antagonist bicuculline and the GABA(C) antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid. This suggests that it largely reflects feedback from GABAergic amacrine cells. The response latency of intact rod bipolar cells was shorter than that of the axotomized cells, and the sensitivity curve covered more than twice the dynamic range. Application of the GABA receptor antagonists partially mimicked the effects of axotomy. These findings suggest that functional properties of the axon terminal system-notably synaptic feedback from amacrine cells-play an important role in defining the response properties of mammalian bipolar cells.