English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The decoration of specialized metabolites influences stylar development

MPS-Authors
/persons/resource/persons212642

Li,  Jiancai
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4169

Schuman,  Meredith C.
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3907

Halitschke,  Rayko
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons226443

Li,  Xiang
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons204742

Guo,  Han
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons76357

Grabe,  Veit
Microscopy Service, Dr. Veit Grabe, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

ITB592.pdf
(Publisher version), 2MB

Supplementary Material (public)

ITB592s1.zip
(Supplementary material), 194KB

Citation

Li, J., Schuman, M. C., Halitschke, R., Li, X., Guo, H., Grabe, V., et al. (2018). The decoration of specialized metabolites influences stylar development. eLife, 7: e38611. doi:10.7554/eLife.38611.


Cite as: https://hdl.handle.net/21.11116/0000-0002-50AE-0
Abstract
Plants produce many different specialized (secondary) metabolites that function in solving ecological challenges; few are known to function in growth or other primary processes. 17-hydroxygeranylinalool diterpene glycosides (DTGs) are abundant herbivory-induced, structurally diverse and commonly malonylated defense metabolites in Nicotiana attenuata plants. By identifying and silencing a malonyltransferase, NaMaT1, involved in DTG malonylation, we found that DTG malonylation percentages are normally remarkably uniform, but when disrupted, result in DTG-dependent reduced floral style lengths, which in turn result from reduced stylar cell sizes, IAA contents, and YUC activity; phenotypes that could be restored by IAA supplementation or by silencing the DTG pathway. Moreover, the Nicotiana genus-specific JA-deficient short-style phenotype also results from alterations in DTG malonylation patterns. Decorations of plant specialized metabolites can be tuned to remarkably uniform levels, and this regulation plays a central but poorly understood role in controlling the development of specific plant parts, such as floral styles.