English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The catalytic pathway of cytochrome P450cam at atomic resolution

MPS-Authors
/persons/resource/persons95189

Schlichting,  Ilme
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94968

Ringe,  Dagmar
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Maves, S. A., Benson, D. E., et al. (2000). The catalytic pathway of cytochrome P450cam at atomic resolution. Science, 287, 1615-1622. doi:10.1126/science.287.5458.1615.


Cite as: http://hdl.handle.net/21.11116/0000-0002-5277-C
Abstract
Members of the cytochrome P450 superfamily catalyze the addition of molecular oxygen to nonactivated hydrocarbons at physiological temperature-a reaction that requires high temperature to proceed in the absence of a catalyst. Structures were obtained for three intermediates in the hydroxylation reaction of camphor by P450cam with trapping techniques and cryocrystallography. The structure of the ferrous dioxygen adduct of P450cam was determined with 0.91 angstrom wavelength x-rays; irradiation with 1.5 angstrom x-rays results in breakdown of the dioxygen molecule to an intermediate that would be consistent with an oxyferryl species. The structures show conformational changes in several important residues and reveal a network of bound water molecules that may provide the protons needed for the reaction.