English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik

MPS-Authors
/persons/resource/persons85033

Reum,  Friedemann
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;
Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring, Dr. Mathias Göckede, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons129255

Göckede,  Mathias
Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring, Dr. Mathias Göckede, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62457

Lavrič,  Jošt V.
Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;
Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62444

Kolle,  Olaf
Service Facility Field Measurements & Instrumentation, O. Kolle, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons226514

Pallandt,  Martijn
Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring, Dr. Mathias Göckede, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62402

Heimann,  Martin
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2936.pdf
(Publisher version), 9MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Reum, F., Göckede, M., Lavrič, J. V., Kolle, O., Zimov, S., Zimov, N., et al. (2019). Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik. Atmospheric Measurement Techniques, 12(11), 5717-5740. doi:10.5194/amt-12-5717-2019.


Cite as: https://hdl.handle.net/21.11116/0000-0002-5318-6
Abstract
Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric CO2 and CH4 dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to WMO scales, employment of a novel water vapor correction, an algorithm to detect influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.