English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adhesion-induced discontinuous transitions and classifying social networks

MPS-Authors
/persons/resource/persons196714

Molkenthin,  Nora
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons191486

Schröder,  Malte
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173689

Timme,  Marc
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Molkenthin, N., Schröder, M., & Timme, M. (2018). Adhesion-induced discontinuous transitions and classifying social networks. Physical Review Letters, 121(13): 138301. doi:10.1103/PhysRevLett.121.138301.


Cite as: https://hdl.handle.net/21.11116/0000-0002-53B1-8
Abstract
Transition points mark qualitative changes in the macroscopic properties of large complex systems. Explosive transitions, exhibiting properties of both continuous and discontinuous phase transitions, have recently been uncovered in network growth processes. Real networks not only grow but often also restructure; yet common network restructuring processes, such as small world rewiring, do not exhibit phase transitions. Here, we uncover a class of intrinsically discontinuous transitions emerging in network restructuring processes controlled by adhesion-the preference of a chosen link to remain connected to its end node. Deriving a master equation for the temporal network evolution and working out an analytic solution, we identify genuinely discontinuous transitions in nongrowing networks, separating qualitatively distinct phases with monotonic and with peaked degree distributions. Intriguingly, our analysis of empirical data indicates a separation between the same two forms of degree distributions distinguishing abstract from face-to-face social networks.