English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Intergenerational gene x environment interaction of FKBP5 and childhood maltreatment on hair steroids

MPS-Authors
/persons/resource/persons80272

Binder,  Elisabeth B.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;
External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Koenig, A. M., Ramo-Fernandez, L., Boeck, C., Umlauft, M., Pauly, M., Binder, E. B., et al. (2018). Intergenerational gene x environment interaction of FKBP5 and childhood maltreatment on hair steroids. PSYCHONEUROENDOCRINOLOGY, 92, 103-112. doi:10.1016/j.psyneuen.2018.04.002.


Cite as: https://hdl.handle.net/21.11116/0000-0002-6977-3
Abstract
Background: The inconsistency in results of cortisol alterations after childhood maltreatment (CM) might arise due to the fact that no study so far considered the effects of environmental factors such as maltreatment load and genetic factors such as the influence of FKBP5 genotype on stress hormone regulation. This study analyzed the interaction between the single nucleotide polymorphism rs1360780 within the FKBP5 gene and the severity of maternal CM experiences (maltreatment load) on hair steroid levels of mother-infant-dyads.
Methods: Hair samples of N = 474 mothers and N = 331 newborns were collected < 1 week after parturition enabling a retrospective assessment of cortisol, cortisone, and dehydroepiandrosterone (DHEA) using mass spectrometry. The sum score of the Childhood Trauma Questionnaire operationalized the maternal maltreatment load. DNA from whole blood or buccal cells was used for FKBP5 genotyping.
Results: The higher the maltreatment load, the higher maternal hair cortisol and cortisone levels in T allele carriers of FKBP5 rsl 360780 were observed. Hair cortisol and DHEA levels of newborns with the T allele were reduced with an increasing maternal maltreatment load, while there was an increase of hair cortisol and DHEA in newborns homozygous for the C allele.
Conclusions: This study is the very first uncovering a gene (FKBP5) x environment (maltreatment load) interaction on hair steroids in mothers and their offspring, indicating an intergenerational transmission of hypothalamic-pituitary-adrenal axis alterations. These results may help to explain the inconsistency in previous findings on steroid hormone alterations after chronic and traumatic stress and should be considered in future studies.