Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultrafast Charge Dynamics in Mixed Cation – Mixed Halide Perovskite Thin Films

MPG-Autoren
/persons/resource/persons202770

Schwoerer,  H.
Laser Research Institute, Department of Physics, Stellenbosch University;
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Minda, I., Horn, J., Ahmed, E., Schlettwein, D., & Schwoerer, H. (2018). Ultrafast Charge Dynamics in Mixed Cation – Mixed Halide Perovskite Thin Films. ChemPhysChem, 19(22), 3010-3017. doi:10.1002/cphc.201800547.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-5772-C
Zusammenfassung
Perovskite based photovoltaic devices are popularised by the rapid increase in their efficiencies. Understanding the fundamental physics and chemistry processes occurring upon excitation is key. We monitored the temporal evolution of the population and depopulation dynamics of various electronic states in FA0.85MA0.15PbI2.55Br0.45 by means of ultrafast transient absorption spectroscopy in the visible and near infrared spectral regions in order to build a fully consistent charge dynamics model of the initial photoprocesses. Upon photoexcitation with 3.2 eV photon energy, hot electrons and holes are generated in the lowest conduction and highest valence bands, away from the bandgap, and cool to the band edges with a time constant of 500 fs. Geminate recombination of excitons occurs with a time constant of 66 ps, which increases to approximately 130 ps at the optical bandgap. From a systematic study of the excited state population dynamics and its dependence on charge carrier density, we determined the nonlinear recombination rate constants characteristic to FA0.85MA0.15PbI2.55Br0.45. The coefficient describing the non‐geminate recombination of free electrons and holes is independent of the k vector as well as the charge carrier density and equal to 1×10−10 s−1 cm3, while the Auger recombination coefficient decreases with increasing charge carrier density in the range of (2–50)×10−32 s−1 cm6.