# Item

ITEM ACTIONSEXPORT

Released

Journal Article

#### Dynamical effects of breaking rotational symmetry in counter-rotating Stuart-Landau oscillators

##### External Resource

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.022212

(Publisher version)

##### Fulltext (public)

There are no public fulltexts stored in PuRe

##### Supplementary Material (public)

There is no public supplementary material available

##### Citation

Punetha, N., Varshney, V., Sahoo, S., Saxena, G., Prasad, A., & Ramaswamy, R. (2018).
Dynamical effects of breaking rotational symmetry in counter-rotating Stuart-Landau oscillators.* Physical
Review E,* *98*(2): 022212. doi:10.1103/PhysRevE.98.022212.

Cite as: http://hdl.handle.net/21.11116/0000-0002-5BF0-9

##### Abstract

Stuart-Landau oscillators can be coupled so as to either preserve or destroy the rotational symmetry that the uncoupled system possesses. We examine some of the simplest cases of such couplings for a system of two nonidentical oscillators. When the coupling breaks the rotational invariance, there is a qualitative difference between oscillators wherein the phase velocity has the same sign (termed co-rotation) or opposite signs (termed counter-rotation). In the regime of oscillation death the relative sense of the phase rotations plays a major role. In particular, when rotational invariance is broken, counter-rotation or phase velocities of opposite signs appear to destabilize existing fixed points, thereby preserving and possibly extending the range of oscillatory behavior. The dynamical "frustration" induced by counter-rotations can thus suppress oscillation quenching when coupling breaks the symmetry.