Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Characterizing Question Facets for Complex Answer Retrieval

MPG-Autoren
/persons/resource/persons206666

Yates,  Andrew
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1805.00791.pdf
(Preprint), 827KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

MacAvaney, S., Yates, A., Cohan, A., Soldaini, L., Hui, K., Goharian, N., et al. (2018). Characterizing Question Facets for Complex Answer Retrieval. Retrieved from http://arxiv.org/abs/1805.00791.


Zitierlink: http://hdl.handle.net/21.11116/0000-0002-5ECE-E
Zusammenfassung
Complex answer retrieval (CAR) is the process of retrieving answers to questions that have multifaceted or nuanced answers. In this work, we present two novel approaches for CAR based on the observation that question facets can vary in utility: from structural (facets that can apply to many similar topics, such as 'History') to topical (facets that are specific to the question's topic, such as the 'Westward expansion' of the United States). We first explore a way to incorporate facet utility into ranking models during query term score combination. We then explore a general approach to reform the structure of ranking models to aid in learning of facet utility in the query-document term matching phase. When we use our techniques with a leading neural ranker on the TREC CAR dataset, our methods rank first in the 2017 TREC CAR benchmark, and yield up to 26% higher performance than the next best method.