English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates

MPS-Authors
/persons/resource/persons188977

Ouyang,  Runhai
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons213699

Curtarolo,  Stefano
Theory, Fritz Haber Institute, Max Planck Society;
Duke University, Durham, North Carolina, USA;

/persons/resource/persons203189

Ahmetcik,  Emre
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21549

Ghiringhelli,  Luca M.
Theory, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., & Ghiringhelli, L. M. (2018). SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Physical Review Materials, 2: 083802. doi:10.1103/PhysRevMaterials.2.083802.


Cite as: http://hdl.handle.net/21.11116/0000-0002-70EB-7
Abstract
There is no abstract available