Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

A large committed long-term sink of Carbon due to vegetation dynamics


Brovkin,  Victor       
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 974KB

Supplementary Material (public)
There is no public supplementary material available

Pugh, T., Jones, C., Huntingford, C., Burton, C., Arneth, A., Brovkin, V., et al. (2018). A large committed long-term sink of Carbon due to vegetation dynamics. Earth's Future, 6, 1413-1432. doi:10.1029/2018EF000935.

Cite as: https://hdl.handle.net/21.11116/0000-0002-5F18-A
The terrestrial biosphere shows substantial inertia in its response to environmental change. Hence, assessments of transient changes in ecosystem properties to 2100 do not capture the full magnitude of the response realized once ecosystems reach an effective equilibrium with the changed environmental boundary conditions. This equilibrium state can be termed the committed state, in contrast to a transient state in which the ecosystem is in disequilibrium. The difference in ecosystem properties between the transient and committed states represents the committed change yet to be realized. Here an ensemble of dynamic global vegetation model simulations was used to assess the changes in tree cover and carbon storage for a variety of committed states, relative to a preindustrial baseline, and to attribute the drivers of uncertainty. Using a subset of simulations, the committed changes in these variables post-2100, assuming climate stabilization, were calculated. The results show large committed changes in tree cover and carbon storage, with model disparities driven by residence time in the tropics, and residence time and productivity in the boreal. Large changes remain ongoing well beyond the end of the 21st century. In boreal ecosystems, the simulated increase in vegetation carbon storage above preindustrial levels was 20–95 Pg C at 2 K of warming, and 45–201 Pg C at 5 K, of which 38–155 Pg C was due to expansion in tree cover. Reducing the large uncertainties in long-term commitment and rate-of-change of terrestrial carbon uptake will be crucial for assessments of emissions budgets consistent with limiting climate change. ©2018. The Authors.