Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Setup of a vibration-suppressed cryogenic system for a RF ion trap with minimum micromotion

MPG-Autoren
/persons/resource/persons212438

Spieß,  Lukas Josef
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

MA_Spiess.pdf
(beliebiger Volltext), 19MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Spieß, L. J. (2018). Setup of a vibration-suppressed cryogenic system for a RF ion trap with minimum micromotion. Master Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-5FDF-A
Zusammenfassung
Recent advancements allow for sympathetic cooling of highly charged ions
(HCI) to mK temperatures in a cryogenic linear Paul trap. This makes high
precision spectroscopy of HCI possible, paving the way to the search for new
physics and novel optical clocks. For this, a highly stable and well-understood
Paul trap is required. In particular, excess micromotion needs to be characterized
and reduced, since it can limit the lowest achievable ion temperature
and therefore spectroscopic precision. Within this thesis, a new cryogenic
supply system was partly assembled, which allows for vibrational decoupling
of the trap, increasing storage stability. The first cool down test achieved a
temperature of 4:23K in the trap environment, which is sufficiently low for
superconductive operation of the intended RF-resonator made from niobium.
Additionally, a photon-correlation technique was used on the existing cryogenic
linear Paul trap using 9Be+ ions for determination of the trap frequency by
measuring the phase shift between the driven ions motion and the driving field.
From the trap frequency the magnification of the imaging system is deduced.
The same photon-correlation technique is used to measure excess micromotion
and to demonstrate its reduction by a factor of 100 compared to a previous
measurement by using new electronics.