English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Accurate calculation of free energy changes upon amino acid mutation.

MPS-Authors
/persons/resource/persons211470

Aldeghi,  M.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14970

de Groot,  B. L.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons32617

Gapsys,  V.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Aldeghi, M., de Groot, B. L., & Gapsys, V. (2019). Accurate calculation of free energy changes upon amino acid mutation. In T. Sikosek (Ed.), Computational Methods in Protein Evolution (pp. 19-47). New York: Springer Nature. doi:10.1007/978-1-4939-8736-8_2.


Cite as: https://hdl.handle.net/21.11116/0000-0002-615A-C
Abstract
Molecular dynamics based free energy calculations allow for a robust and accurate evaluation of free energy changes upon amino acid mutation in proteins. In this chapter we cover the basic theoretical concepts important for the use of calculations utilizing the non-equilibrium alchemical switching methodology. We further provide a detailed step-by-step protocol for estimating the effect of a single amino acid mutation on protein thermostability. In addition, the potential caveats and solutions to some frequently encountered issues concerning the non-equilibrium alchemical free energy calculations are discussed. The protocol comprises details for the hybrid structure/topology generation required for alchemical transitions, equilibrium simulation setup, and description of the fast non-equilibrium switching. Subsequently, the analysis of the obtained results is described. The steps in the protocol are complemented with an illustrative practical application: a destabilizing mutation in the Trp cage mini protein. The concepts that are described are generally applicable. The shown example makes use of the pmx software package for the free energy calculations using Gromacs as a molecular dynamics engine. Finally, we discuss how the current protocol can readily be adapted to carry out charge-changing or multiple mutations at once, as well as large-scale mutational scans.