Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Kinetic turbulence in fast three-dimensional collisionless guide-field magnetic reconnection

MPG-Autoren
/persons/resource/persons140516

Muñoz Sepúlveda,  Patricio A.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103851

Büchner,  Jörg
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Muñoz Sepúlveda, P. A., & Büchner, J. (2018). Kinetic turbulence in fast three-dimensional collisionless guide-field magnetic reconnection. Physical Review E, 98(4): 043205. doi:10.1103/PhysRevE.98.043205.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-6273-E
Zusammenfassung
Although turbulence has been conjectured to be important for magnetic reconnection, still very little is known about its role in collisionless plasmas. Previous attempts to quantify the effect of turbulence on reconnection usually prescribed Alfvénic or other low-frequency fluctuations or investigated collisionless kinetic effects in just two-dimensional configurations and antiparallel magnetic fields. In view of this, we analyzed the kinetic turbulence self-generated by three-dimensional guide-field reconnection through force-free current sheets in frequency and wave-number spaces, utilizing 3D particle-in cell code numerical simulations. Our investigations reveal reconnection rates and kinetic turbulence with features similar to those obtained by current in situ spacecraft observations of MMS as well as in the laboratory reconnection experiments MRX, VTF, and VINETA-II. In particular, we found that the kinetic turbulence developing in the course of 3D guide-field reconnection exhibits a broadband power-law spectrum extending beyond the lower-hybrid frequency and up to the electron frequencies. In the frequency space the spectral index of the turbulence appeared to be close to −2.8 at the reconnection X line. In the wave-number space it also becomes −2.8 as soon as the normalized reconnection rate reaches 0.1. The broadband kinetic turbulence is mainly due to current-streaming and electron-flow-shear instabilities excited in the sufficiently thin current sheets of kinetic reconnection. The growth of the kinetic turbulence corresponds to high reconnection rates which exceed those of fast laminar, nonturbulent reconnection.