Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cortical tracking of rhythm in music and speech

MPG-Autoren
/persons/resource/persons22876

Harding,  Eleanor
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19958

Sammler,  Daniela
Otto Hahn Group Neural Bases of Intonation in Speech, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons23118

Henry,  Molly
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Brain and Mind Institute, Brain and Mind Institute, London, ON, Canada;

/persons/resource/persons19791

Kotz,  Sonja A.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Neuropsychology and Psychopharmacology, Maastricht University, the Netherlands;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Harding, E., Sammler, D., Henry, M., Large, E. W., & Kotz, S. A. (2019). Cortical tracking of rhythm in music and speech. NeuroImage, 185, 96-101. doi:10.1016/j.neuroimage.2018.10.037.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-64CE-6
Zusammenfassung
Neural activity phase-locks to rhythm in both music and speech. However, the literature currently lacks a direct test of whether cortical tracking of comparable rhythmic structure is comparable across domains. Moreover, although musical training improves multiple aspects of music and speech perception, the relationship between musical training and cortical tracking of rhythm has not been compared directly across domains. We recorded the electroencephalograms (EEG) from 28 participants (14 female) with a range of musical training who listened to melodies and sentences with identical rhythmic structure. We compared cerebral-acoustic coherence (CACoh) between the EEG signal and single-trial stimulus envelopes (as measure of cortical entrainment) across domains and correlated years of musical training with CACoh. We hypothesized that neural activity would be comparably phase-locked across domains, and that the amount of musical training would be associated with increasingly strong phase locking in both domains. We found that participants with only a few years of musical training had a comparable cortical response to music and speech rhythm, partially supporting the hypothesis. However, the cortical response to music rhythm increased with years of musical training while the response to speech rhythm did not, leading to an overall greater cortical response to music rhythm across all participants. We suggest that task demands shaped the asymmetric cortical tracking across domains.