English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detection of somatic epigenetic variation in Norway spruce via targeted bisulfite sequencing

MPS-Authors
/persons/resource/persons201528

Ullrich,  Kristian K.
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Heer, K., Ullrich, K. K., Hiss, M., Liepelt, S., Schulze Brüning, R., Zhou, J., et al. (2018). Detection of somatic epigenetic variation in Norway spruce via targeted bisulfite sequencing. Ecology and Evolution, 0(0). doi:https://doi.org/10.1002/ece3.4374.


Cite as: http://hdl.handle.net/21.11116/0000-0002-64D6-C
Abstract
Abstract Epigenetic mechanisms represent a possible mechanism for achieving a rapid response of long-lived trees to changing environmental conditions. However, our knowledge on plant epigenetics is largely limited to a few model species. With increasing availability of genomic resources for many tree species, it is now possible to adopt approaches from model species that permit to obtain single-base pair resolution data on methylation at a reasonable cost. Here, we used targeted bisulfite sequencing (TBS) to study methylation patterns in the conifer species Norway spruce (Picea abies). To circumvent the challenge of disentangling epigenetic and genetic differences, we focused on four clone pairs, where clone members were growing in different climatic conditions for 24 years. We targeted >26.000 genes using TBS and determined the performance and reproducibility of this approach. We characterized gene body methylation and compared methylation patterns between environments. We found highly comparable capture efficiency and coverage across libraries. Methylation levels were relatively constant across gene bodies, with 21.3 ± 0.3%, 11.0 ± 0.4% and 1.3 ± 0.2% in the CG, CHG, and CHH context, respectively. The variance in methylation profiles did not reveal consistent changes between environments, yet we could identify 334 differentially methylated positions (DMPs) between environments. This supports that changes in methylation patterns are a possible pathway for a plant to respond to environmental change. After this successful application of TBS in Norway spruce, we are confident that this approach can contribute to broaden our knowledge of methylation patterns in natural tree populations.