Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cryptic haplotype-specific gamete selection yields offspring with optimal MHC immune genes

MPG-Autoren
/persons/resource/persons56796

Lenz,  Tobias L.
Research Group Evolutionary Immunogenomics, Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Emmy Noether Research Group Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons71686

Hafer,  Nina
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56896

Samonte,  Irene E.
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons57017

Yeates,  Sarah E.
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56825

Milinski,  Manfred
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Emeritus Group Milinski, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Lenz_2018_Evolution.pdf
(Verlagsversion), 578KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lenz, T. L., Hafer, N., Samonte, I. E., Yeates, S. E., & Milinski, M. (2018). Cryptic haplotype-specific gamete selection yields offspring with optimal MHC immune genes. Evolution, 72(11), 2478-2490. doi:10.1111/evo.13591.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-673D-7
Zusammenfassung
Abstract Females choose specific mates in order to produce fitter offspring. However, several factors interfere with females' control over fertilization of their eggs, including sneaker males and phenotypically unpredictable allele segregation during meiosis. Mate choice at the individual level thus provides only a poor approximation for obtaining the best genetic match. Consequently, postcopulatory sperm selection by female oocytes has been proposed as a mechanism to achieve complementary combinations of parental haplotypes. Here, using controlled in vitro fertilization of three-spined stickleback eggs, we find haplotype-specific fertilization bias toward gametes with complementary major histocompatibility complex (MHC) immunogenes. The resulting zygote (and thus offspring) genotypes exhibit an intermediate level of individual MHC diversity that was previously shown to confer highest pathogen resistance. Our finding of haplotype-specific gamete selection thus represents an intriguing mechanism for fine-tuned optimization of the offspring's immune gene composition and an evolutionary advantage in the Red Queen dynamics of host-parasite coevolution.