Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Generalized gravity model for human migration


Park,  Hye Jin
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource

(Publisher version)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available

Park, H. J., Jo, W. S., Lee, S. H., & Kim, B. J. (2018). Generalized gravity model for human migration. New Journal of Physics, 20(9): 093018. doi:10.1088/1367-2630/aade6b.

Cite as: https://hdl.handle.net/21.11116/0000-0002-6BE8-1
The gravity model (GM) analogous to Newton’s law of universal gravitation has successfully described the flow between different spatial regions, such as human migration, traffic flows, international economic trades, etc. This simple but powerful approach relies only on the ‘mass’ factor represented by the scale of the regions and the ‘geometrical’ factor represented by the geographical distance. However, when the population has a subpopulation structure distinguished by different attributes, the estimation of the flow solely from the coarse-grained geographical factors in the GM causes the loss of differential geographical information for each attribute. To exploit the full information contained in the geographical information of subpopulation structure, we generalize the GM for population flow by explicitly harnessing the subpopulation properties characterized by both attributes and geography. As a concrete example, we examine the marriage patterns between the bride and the groom clans of Korea in the past. By exploiting more refined geographical and clan information, our generalized GM properly describes the real data, a part of which could not be explained by the conventional GM. Therefore, we would like to emphasize the necessity of using our generalized version of the GM, when the information on such nongeographical subpopulation structures is available.