English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Light-induced anomalous Hall effect in graphene

MPS-Authors
/persons/resource/persons198728

McIver,  J. W.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons214000

Schulte,  B.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons188887

Stein,  F.-U.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons227397

Matsuyama,  T.
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons224134

Jotzu,  G.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons141017

Meier,  G.
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Clarendon Laboratory, University of Oxford;

Fulltext (public)

1811.03522.pdf
(Preprint), 6MB

Supplementary Material (public)
Citation

McIver, J. W., Schulte, B., Stein, F.-U., Matsuyama, T., Jotzu, G., Meier, G., et al. (2019). Light-induced anomalous Hall effect in graphene. Nature Physics. doi:10.1038/s41567-019-0698-y.


Cite as: http://hdl.handle.net/21.11116/0000-0002-7841-E
Abstract
Many non-equilibrium phenomena have been discovered or predicted in optically driven quantum solids1. Examples include light-induced superconductivity2,3 and Floquet-engineered topological phases4,5,6,7,8. These are short-lived effects that should lead to measurable changes in electrical transport, which can be characterized using an ultrafast device architecture based on photoconductive switches9. Here, we report the observation of a light-induced anomalous Hall effect in monolayer graphene driven by a femtosecond pulse of circularly polarized light. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect a Floquet-engineered topological band structure4,5, similar to the band structure originally proposed by Haldane10. This includes an approximately 60 meV wide conductance plateau centred at the Dirac point, where a gap of equal magnitude is predicted to open. We find that when the Fermi level lies within this plateau the estimated anomalous Hall conductance saturates around 1.8 ± 0.4 e2/h.