English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Importance of surface roughness for the local biogeophysical effects of deforestation

MPS-Authors
/persons/resource/persons201864

Winckler,  Johannes
Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37304

Reick,  Christian H.
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37296

Pongratz,  Julia
Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

Supplementary Material (public)

Winckler_JGR-Atmospheres-2019-Supplement.zip
(Supplementary material), 8MB

jgrd55651-sup-0001-2018jd030127-si-s01.pdf
(Supplementary material), 6MB

Citation

Winckler, J., Reick, C. H., Bright, R., & Pongratz, J. (2019). Importance of surface roughness for the local biogeophysical effects of deforestation. Journal of Geophysical Research - Atmospheres, 124, 8605-8618. doi:10.1029/2018JD030127.


Cite as: http://hdl.handle.net/21.11116/0000-0003-9DEC-3
Abstract
Deforestation influences surface properties such as surface roughness, resulting in changes in the surface energy balance and surface temperature. Recent studies suggest that the biogeophysical effects are dominated by changing roughness, and it remains unclear whether this can be reconciled with earlier modeling studies that highlighted the importance of a reduction of evapotranspiration in the low latitudes and a reduction of net shortwave radiation at the surface in the high latitudes. To clarify this situation, we analyze the local effects of deforestation on surface energy balance and temperature in the MPI‐ESM climate model by performing three separate experiments: switching from forest to grass all surface properties, only surface albedo, and only surface roughness. We find that the locally induced changes in surface temperature are dominated by changes in surface roughness for the annual mean, the response of the diurnal amplitude, and the seasonal response to deforestation. For these three quantities, the results of the MPI‐ESM lie within the range of observation‐based data sets. Deforestation‐induced decreases in surface roughness contribute substantially to winter cooling in the boreal regions and to decreases in evapotranspiration in the tropics. By comparing the energy balance decompositions from the three experiments, the view that roughness changes dominate the biogeophysical consequences of deforestation can be reconciled with the earlier studies highlighting the relevance of evapotranspiration