English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Trabecular bone functional adaptation and sexual dimorphism in the human foot

MPS-Authors
/persons/resource/persons228274

Stock,  Jay T.
Archaeology, Max Planck Institute for the Science of Human History, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saers, J. P. P., Ryan, T. M., & Stock, J. T. (2019). Trabecular bone functional adaptation and sexual dimorphism in the human foot. American Journal of Physical Anthropology, 168, 154-169. doi:10.1002/ajpa.23732.


Cite as: https://hdl.handle.net/21.11116/0000-0002-9A3F-B
Abstract
Abstract Objectives Trabecular bone adapts to the strains placed upon the skeleton during life. Anthropological research has largely focused on linking variation in primate trabecular bone to locomotor mode, to provide a context for interpreting fossil morphology. However, intraspecific variation and its underlying mechanisms are still poorly understood. Trabecular bone is influenced by a variety of factors including body mass, age, diet, temperature, genetics, sex, and behavior. Before trabecular structure can be used to infer habitual behavior in the past, the effects of these factors need to be understood. In this article, we examine variation in trabecular structure in the human foot in four archaeological groups in relation to inferred levels of terrestrial mobility and sex. Materials and methods We use high-resolution ?CT scanning to examine variation in trabecular structure in the human calcaneus, talus, and first metatarsal in two relatively mobile and two relatively sedentary archaeological groups. Results The four population samples show similar patterns of trabecular variation throughout the foot, influenced by mechanical loading. Greater inferred terrestrial mobility is associated with greater bone volume fraction and thicker, more widely spaced, and less interconnected trabeculae. However, contrary to diaphyseal rigidity, only limited sexual dimorphism was found in trabecular structure. Discussion This work demonstrates that trabecular bone may serve as a useful proxy of habitual behavior in the fossil and archaeological record when other factors are carefully considered. However, the mechanisms underlying sexual dimorphism are not well understood. As such, inferring sex differences in habitual behavior is currently challenging.