日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

LEED-I(V) Structure Analysis of the (7 × √3)rect SO4 Phase on Ag(111): Precursor to the Active Species of the Ag-Catalyzed Ethylene Epoxidation

MPS-Authors
/persons/resource/persons135780

Jones,  Travis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Wyrwich, R., Jones, T., Günther, S., Moritz, W., Ehrensperger, M., Böcklein, S., Lüsner, A., Locatelli, A., Onur Mentes, T., Nino, M. A., Knop-Gericke, A., Schlögl, R., Piccinin, S., & Wintterlin, J. (2018). LEED-I(V) Structure Analysis of the (7 × √3)rect SO4 Phase on Ag(111): Precursor to the Active Species of the Ag-Catalyzed Ethylene Epoxidation. The Journal of Physical Chemistry C, 122(47), 26998-27004. doi:10.1021/acs.jpcc.8b09309.


引用: https://hdl.handle.net/21.11116/0000-0002-AE60-E
要旨
According to a recently proposed mechanism, the silver-catalyzed industrial synthesis of ethylene oxide (EO) involves adsorbed SO4. The O atoms that are added to the ethylene molecules to give EO originate from SO4, which may solve the long-standing question about the active oxygen species in this reaction. Here, we report a low-energy electron diffraction structure analysis of an ordered phase of SO4 on the Ag(111) surface, forming a (7 × √3)rect structure and containing the oxygen species that before had been spectroscopically
identified on the active catalyst. Using I(V) data from a low-energy electron microscope and an input model from density functional theory, the complex structure could be solved. It contains SO4 moieties on a reconstructed Ag(111) surface in which all four O atoms bind to Ag atoms. In the proposed ethylene epoxide reaction model, the structure represents the parent phase from which the active SO4 phase is formed by a lifting of the reconstruction.