English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

CO2 Adsorption on Ti3O6-: A Novel Carbonate Binding Motif

MPS-Authors
/persons/resource/persons192335

Debnath,  Sreekanta
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons104332

Song,  Xiaowei
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons45968

Fagiani,  Matias Ruben
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)

Debnath_etal_SI_Ti3O6CO2_final_rev_03.pdf
(Supplementary material), 2MB

Citation

Debnath, S., Song, X., Fagiani, M. R., Weichman, M. L., Gao, M., Maeda, S., et al. (2019). CO2 Adsorption on Ti3O6-: A Novel Carbonate Binding Motif. The Journal of Physical Chemistry C, 123(13), 8439-8446. doi:10.1021/acs.jpcc.8b10724.


Cite as: http://hdl.handle.net/21.11116/0000-0002-B2EB-C
Abstract
CO2 adsorption on Ti3O6-, which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation (IRPD) spectroscopy in combination with density functional theory (DFT) and coupled cluster computations as well as a recently developed multi-component artificial force induced reaction method. The IRPD spectra of D2-tagged [Ti3O6(CO2)n]- with n = 1, 2 are reported in the spectral window of 450–2400 cm-1 and assigned based on a comparison to harmonic IR spectra from the DFT calculations. We find that CO2 binding leaves the unpaired electron largely unperturbed. The first two CO2 molecules adsorb chemically to Ti3O6- by incorporating a formally doubly negatively charged, either doubly or triply coordinated O-atom to form a bidentate or tridentate bridging carbonate dianion (CO32-), respectively. The latter binding motif exhibits a characteristic IR signature in the form of an intense doublet of peaks near 1400 cm-1 stemming from two antisymmetric carbonate stretching modes.