English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Gamma synchronization between V1 and V4 improves behavioral performance

MPS-Authors

Rohenkohl,  Gustavo
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141609

Fries,  Pascal       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rohenkohl, G., Bosman, C. A., & Fries, P. (2018). Gamma synchronization between V1 and V4 improves behavioral performance. Neuron, 100(4), 953-963. doi:10.1016/j.neuron.2018.09.019.


Cite as: https://hdl.handle.net/21.11116/0000-0002-C719-2
Abstract
Behavior is often driven by visual stimuli, relying on feedforward communication from lower to higher visual areas. Effective communication depends on enhanced interareal coherence, but it remains unclear whether this coherence occurs at an optimal phase relation that actually improves stimulus transmission to behavioral report. We recorded local field potentials from V1 and V4 of macaques performing an attention task during which they reported changes in the attended stimulus. V1-V4 gamma synchronization immediately preceding the stimulus change partly predicted subsequent reaction times (RTs). RTs slowed systematically as trial-by-trial interareal gamma phase relations deviated from the phase relation at which V1 and V4 synchronized on average. V1-V4 gamma phase relations accounted for RT differences of 13-31 ms. Effects were specific to the attended stimulus and not explained by local power or phase. Thus, interareal gamma synchronization occurs at the optimal phase relation for transmission of sensory inputs to motor responses.