English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Redetermination of Sr2PdO3 from single-crystal X-ray data

MPS-Authors
/persons/resource/persons204916

Thakur,  Gohil S.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126670

Jansen,  Martin
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Thakur, G. S., Reuter, H., Felser, C., & Jansen, M. (2019). Redetermination of Sr2PdO3 from single-crystal X-ray data. Acta Crystallographica Section E: Structure Reports Online, 75(1), 30-32. doi:10.1107/S2056989018017176.


Cite as: https://hdl.handle.net/21.11116/0000-0002-BBDF-1
Abstract
The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209-213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28-38; Nagata et al. (2002). J. Alloys Compd. 346, 50-56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.