Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection

MPG-Autoren
/persons/resource/persons136024

Miller,  R. J. D.
Departments of Physics and Chemistry, University of Toronto;
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1804.09863.pdf
(Preprint), 821KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Daoud, H., Joubert-Doriol, L., Izmaylov, A. F., & Miller, R. J. D. (2018). Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection. Chemical Physics, 515, 28-35. doi:10.1016/j.chemphys.2018.08.034.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-BF57-6
Zusammenfassung
Conical intersections (CIs) have been widely studied using spectroscopic techniques. However, CIs have mainly been identified by rapid internal conversion transitions that take place after the photoexcitation. Such identifications cannot distinguish various types of intersections as well as to separate the actual intersection from an avoided crossing. In this paper, we investigate how ultrafast IR laser pulses can be utilized to stimulate nuclear dynamics revealing geometric phase features associated with CIs. We consider two low-dimensional nonadiabatic models to obtain optimal two- and three-pulse laser sequences for stimulating nuclear dynamics necessary for the CI identification. Our results provide insights on designing non-linear spectroscopic schemes for subsequent probes of the nuclear wavepackets by ultrafast electron diffraction techniques to unambiguously detect CIs in molecules.